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Abstract

This work is concerned with the modelling of the interaction of fluid flow with flexible solid structures. The fluid flow considered is
governed by the incompressible Navier–Stokes equations and modelled with stabilised low order velocity–pressure finite elements. The
motion of the fluid domain is accounted for by an arbitrary Lagrangian–Eulerian (ALE) strategy. The structure is represented by means
of an appropriate standard finite element formulation. For the temporal discretisation of both fluid and solid bodies, the discrete implicit
generalised-a method is employed.

An important aspect of the presented work is the introduction of the independent interface discretisation, which allows an efficient,
modular and expandable implementation of the solution strategy. A simple data transfer strategy based on a finite element type inter-
polation of the interface degrees of freedom guarantees kinematic consistency and equilibrium of the stresses along the interface.

The resulting strongly coupled set of non-linear equations is solved by means of a novel partitioned solution procedure, which is based
on the Newton–Raphson methodology and incorporates the full linearisation of the overall incremental problem. Thus, asymptotically
quadratic convergence of the residuals is achieved. Numerical examples are presented to demonstrate the robustness and efficiency of the
methodology.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The interaction of fluid flow with flexible solid structures is frequently encountered in many areas of civil, mechanical,
aerospace and biomechanical engineering. Traditional approaches to analysis of such problems, although proving extre-
mely useful tools in engineering practice, necessarily rely on simplified models, which have narrow range of validity and
applications [1]. More demanding fluid–structure interaction problems, such as those involving for instance large structural
deformations, necessitate use of numerical approaches. In recent years the numerical modelling of fluid–structure interac-
tion has become a focus of major research activity (see e.g. [2] for a recent review of the field). This has been made possible
by the advances made during the last decade or so in enabling computational methodologies comprising both computa-
tional modelling of fluid flow and solid structures, and galvanised by further significant increases in terms of affordable
computational resources. However, the optimal choice of specific numerical strategies for the discretisation of the fluid,
solid and time domains and for the modelling of the fluid–structure interface still remains open. A number of different solu-
tion procedures for the coupled discretised problem are currently being employed [2].
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In this work, we propose a specific combination of numerical discretisation strategies and then present a novel solution
procedure for the coupled sets of discrete non-linear equations. In particular, we employ a discrete time integration scheme
as opposed to the recently frequently used space–time strategies. The adopted solution strategy allows the employment of
independent interface degrees of freedom, which adds significantly to its efficiency, modularity and expandability. A major
contribution of the present work is the development of a novel solution procedure based on the exact linearisation of the
overall problem, which results in optimal rates of convergence of the residuals.

We point out that the work presented in this paper extends the solution methodologies described in [3,4] for fluid–rigid
body interaction and free surface flows with surface tension to the problem of fluid–structure interaction. As a consequence
of this, the presentation of the background material is largely common to all three publications. The close relation between
the solution strategies we have employed in modelling of free surface flow [3] and fluid–rigid body interaction [4], and the
strategy for fluid–structure interaction described in this paper, has been used in [5] for the development of a single com-
putational platform with a wide range of applications.

The computational ingredients of the adopted strategy are as follows:
In this paper, we assume an incompressible Newtonian fluid. For the modelling of the fluid flow we therefore use a sta-

bilised equal order velocity–pressure finite element formulation adapted to a moving domain. The stabilisation technique
employed was introduced by Hughes and co-workers (see e.g. [6–8]) and then further developed by Tezduyar and others
(see e.g. [9–12]). It enhances stability of the velocity field in advection dominated regions of the domain and at the same
time enables the use of computationally convenient equal order finite element spaces for the velocity and pressure fields.
The formulation used in this work is referred to as the streamline-upwind/- and pressure-stabilising/Petrov–Galerkin method
(SUPG/PSPG, see [9]), which, in the framework of linear finite element interpolation, may be regarded as a Galerkin/least-

squares stabilisation technique (see [7]). Such techniques have become standard in Eulerian finite element formulations and
have been applied to various problems arising in fluid mechanics (see e.g. [13,15–18,3,19,5]). A review of a variety of sta-
bilisation techniques may be found in [20].

We emphasise that the solution strategy for fluid–structure interaction problems presented in this work is not limited to
incompressible fluid flow applications. The stabilised formulation described above can be replaced by an appropriate finite
element method for compressible fluid flow or, in fact, by a finite volume strategy. However, due to its relevance in physical
applications, we have chosen to consider incompressible fluids. It has also been shown recently by Matthies [21] that the
presence of the incompressibility constraint indeed makes this the more challenging problem.

An arbitrary Lagrangian–Eulerian (ALE) description is used to account for the deformation of the fluid domain which
arises from the displacement and deformation of the solid structure. Some of the first researchers to demonstrate the
potential of this approach are, among others, Hirt et al. [22], Hughes et al. [23], Donea [24], Ramaswamy and Kawahara
[25,26], Huerta and Liu [27], Soulaimani et al. [28]. More recent publications are e.g. [29–32,18,3–5]. A related strategy
based on the space–time finite element formulation on moving domains has been developed by Tezduyar et al. [33,34],
Masud and Hughes [13] and Hansbo [14]. In all the above strategies the movement of the fluid finite element mesh is gov-
erned by an appropriate algorithm, thus maintaining a good mesh quality despite substantial deformation of the fluid
domain.

The solid structure, depending on the physical problem under consideration, may be modelled by an appropriate stan-
dard finite element technique, involving membrane, beam, shell and/or continuum elements. The strategy adopted in this
work allows the employment of non-matching fluid and structural meshes based on different finite element interpolations.
At the interface a simple interpolation strategy is employed, which strongly enforces kinematic constraints and leads to a
straightforward transfer of the traction fields. This methodology has been extended to incorporate the independent finite
element type discretisation of the interface.

The generalised-a method is employed for the integration in time. This method belongs to the class of discrete and impli-
cit single step integration schemes. For linear problems the scheme can be shown to be second order accurate and uncon-
ditionally stable. Furthermore, it allows strict user controlled damping of high unresolved frequencies. The generalised-a
method was originally developed for the second order problems arising in solid dynamics by Chung and Hulbert [35], and
later adapted to the first order problems typically encountered in Eulerian fluid dynamics by Jansen et al. [36]. For a
detailed study of the generalised-a method in the context of the stabilised Eulerian finite element formulation for fluid flow
we refer to [37,5]. In this work, we employ the original generalised-a scheme introduced in [35] for the time integration of
the structural dynamics, whereas we base the integration of the fluid flow on [36,37].

The fully discretised model consists of coupled sets of non-linear equations. The coupling can be described briefly as
follows: The deformation of the structure is driven by the traction forces exerted by the fluid at the fluid–solid interface.
The structural displacements, on the other hand, define the geometry and the geometry changes of the fluid domain. In a
discrete finite element setting this situation may be regarded as a coupled three field problem, involving the fluid flow, the
motion of the fluid mesh and the structural dynamics.

The final numerical ingredient required is a robust and efficient solution procedure to compute the complete set of
unknowns at the current time instant. Due to the above described coupling, this poses a considerable difficulty, which
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is often circumvented by the employment of staggered partitioned solution schemes (for more information on this
approach see [38]). Such techniques require the execution of a specified sequence of solver components with intermediate
communication of data. However, these methods often lack accuracy and robustness, and thereby impose a restriction to
small time steps. Alternatively, a specified sequence of solver components may be iteratively repeated until accuracy
requirements are met [39,40]. In the experience of the authors, the iterative schemes from this category usually exhibit poor
convergence, particularly for large fluid meshes and soft structures. In this work, a novel partitioned solution scheme has
been developed relying on the Newton–Raphson procedure, which incorporates the full linearisation of the incremental
problem and hence exhibits asymptotically quadratic convergence of the solution for all problem unknowns. Alternative
strategies, some of which resemble Quasi-Newton procedures or employ linearisations obtained by numerical differentia-
tion, have been suggested by e.g. Tezduyar [41,42] and Matthies and Steindorf [40].

It will be shown in the following sections that the combination of the above described numerical ingredients renders a
robust, accurate and competitive methodology. A specific focus of this work is on the solution procedure employed to
resolve the strong coupling of the problems under consideration.

The layout of the paper is as follows: In Section 2 we summarise the governing equations. The fluid finite element for-
mulation is presented in Section 3. Subsequently, we discuss the update strategy for the fluid mesh. In Section 5, some
remarks are made on the structural finite element methods considered in this work. Section 6 is concerned with the inte-
gration in time, and in Section 7 we address the modelling of the interface and establish a compact representation of the
overall discretised coupled and non-linear problem. The solution strategy is then discussed in Section 8. Finally, three
numerical examples are presented in detail in Section 9.
2. Governing equations

2.1. Incompressible Newtonian fluid flow on a moving domain

2.1.1. The moving reference frame

An essential feature of the problems under consideration is the motion of the boundary of the fluid domain. The geom-
etry of the fluid domain may change substantially during the time domain of interest. The fluid particles flow in or through
a spatial domain, which is itself at motion. Therefore, it is convenient to formulate the problem in the ALE description
relying on a moving reference frame, in which the conservation laws are expressed.

In this context it is well-established (see e.g. [3,4,19,22–25]) that the time derivative of the velocity u of the fluid particle
which traverses through the coordinate x̂ of the reference frame at a specific time instant can be written as

Du

Dt
¼ rx̂uðu� v̂Þ þ _u; ð1Þ

where v̂ ¼ ox̂=ot is the velocity of the reference point.
The operator rx̂ð�Þ denotes the derivatives with respect to the current referential coordinates x̂. The expression _u cor-

responds to the change of the material particle velocity, which is noted by an observer travelling with a point on the ref-
erence frame. The velocity difference u� v̂ is denoted as the convective velocity. In the framework of the finite element
method, the moving reference frame is identified with the finite element mesh. The Eulerian or Lagrangian representations
of the material time derivative of u are easily recovered from (1) by setting v̂ ¼ 0 or v̂ ¼ u, respectively.
2.1.2. Governing equations

The momentum conservation law and the continuity equation for incompressible flow are formulated in the referential
description as

qð _uþ ðrx̂uÞðu� v̂Þ � f Þ � rx̂ � r ¼ 0 8ðx̂; tÞ 2 X� I ; ð2Þ
rx̂ � u ¼ 0 8ðx̂; tÞ 2 X� I ; ð3Þ

where q, f and r represent, respectively, the fluid density, the volume force vector and the Cauchy stress tensor. The time
interval of interest is denoted as I = [0,T]. The constitutive equation for the Newtonian fluid, to which this work is re-
stricted, reads

r ¼ �pI þ 2lrs
x̂u; ð4Þ

where I is the second order identity tensor, l denotes the fluid viscosity, rs
x̂ð�Þ is the symmetric gradient operator and p

represents the pressure, which, in similarity to the velocity u, is a function of x̂ and t.
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The boundary C of X may consist of the complementary subsets Cg, Ch and Cf�s, which represent the following bound-
ary conditions

u� g ¼ 0 8ðx̂; tÞ 2 Cg � I ; ð5Þ
rn̂� h ¼ 0 8ðx̂; tÞ 2 Ch � I ; ð6Þ
u� _d ¼ 0 8ðx̂; tÞ 2 Cf�s � I ; ð7Þ
ðu� v̂Þ � n̂ ¼ 0 8ðx̂; tÞ 2 Cf�s � I ; ð8Þ
tf þ ts ¼ rn̂þ ts ¼ 0 8ðx̂; tÞ 2 Cf�s � I . ð9Þ

The quantities g, h and n̂ denote, respectively, prescribed velocity and traction vectors and the current outward normal unit
vector of the boundary, which is given by the positions x̂ of the boundary. For most practical applications the Dirichlet and
Neumann boundaries Cg and Ch are fixed in space and thus v̂ ¼ 0 or at least v̂ � n̂ ¼ 0 on Cg and Ch, "t 2 I.

Eq. (7) represents the no-slip condition at the fluid–structure interface Cf�s. The quantity _d denotes the velocity vector
field of the structure at the interface Cf�s. Also on Cf�s, the velocity v̂ of the reference frame and the positions x̂ need to
satisfy the consistency condition (8), which ensures that the boundary of the reference frame accurately represents the cur-
rent configuration of the structure. The equilibrium of the stresses along the interface is expressed by the relation (9), where
the quantities tf and ts represent the traction vectors exerted, respectively, by the fluid and the structure on the interface.

Finally, we note the initial conditions u = u0, _u ¼ _u0 and x̂ ¼ x̂0; 8x̂ 2 X at t = 0.

2.2. Structural dynamics

In a standard Lagrangian description, the conservation of momentum of a solid continuum may be expressed in spatial
description as

qð€d � f Þ � r � r ¼ 0; ð10Þ
where q is the current density of the deformed solid and the vector d represents the displacement field, whereas the body
forces are given by the vector f. The symmetric second order tensor r in (10) denotes the Cauchy stress tensor. Following
standard finite strain continuum mechanics, appropriate local strain measures may be defined on the basis of the displace-
ment field d. The Cauchy stress r is related to the strains by a constitutive relation suitable to model the behaviour of the
solid material under consideration. For simplicity, this work shall be restricted to elastic structures (see Section 5).

In similarity to the boundary of the fluid domain, the boundary of the solid structure may consist of three complemen-
tary subsections Ch, Cd and Cf�s with

d � g ¼ 0 8ðx; tÞ 2 Cg � I ; ð11Þ
rn� h ¼ 0 8ðx; tÞ 2 Ch � I ; ð12Þ
_d � u ¼ 0 8ðx; tÞ 2 Cf�s � I ; ð13Þ
ts þ tf ¼ rnþ tf ¼ 0 8ðx; tÞ 2 Cf�s � I ; ð14Þ

where the quantities g, h and n denote, respectively, prescribed displacement and traction vectors and the current outward
normal unit vector of the boundary. The boundary conditions (13) and (14) clearly correspond to (7) and (9), respectively.

Initially, the configuration of the structure is known as d = d0 and _d ¼ _d0 8x 2 X at t = 0.

3. Stabilised finite element formulation for the fluid flow

Let Sh;Vh;Ph be the appropriate finite element spaces of continuous piecewise linear functions on Xh, where
Xh ¼

Snel

e¼1X
e is a standard discretisation of the fluid domain X with nel finite elements. A stabilised velocity–pressure finite

element formulation of the fluid flow described in Section 2.1 then reads:
For any t 2 I, find uh 2Sh and ph 2 Ph such that the following weak form is satisfied for any admissible duh 2Vh and

dph 2 Ph,

Gfðuh; ph; duh; dphÞ ¼ GGalðuh; ph; duh; dphÞ þ Gstabðuh; ph; duh; dphÞ ¼ 0. ð15Þ

The variational form (15) consists of the standard Galerkin terms summarised in GGal, to which a stabilisation term Gstab of
the momentum equation has been added.

In order to simplify the notation in the remainder of this section, which is dedicated to the detailed presentation of GGal

and Gstab, the coupling of Eq. (15) with the deformation of the solid structure is not explicitly included. This issue, together
with the appropriate notation, is elaborated in detail in Section 7.
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The Galerkin terms, which can be obtained from Eqs. (2)–(6) by the standard procedure, read

GGalðuh; ph; duh; dphÞ ¼
Z

Xh
ðqduh � ð _uh þ ðrx̂h uhÞðuh � v̂hÞ � f Þ þ rx̂hduh : rðuh; phÞ þ dphðrx̂h � uhÞÞdv�

Z
Ch

h

duh � hh da;

ð16Þ
where the vector field v̂h denotes the mesh motion, which is based on the same finite element interpolation as uh.

The stabilisation term used in this work is similar to the one employed by the authors in [9], but has been extended to
incorporate modifications required in the ALE framework. In [9], the stabilisation technique is referred to as a combination
of the streamline-upwind/- and the pressure-stabilising/Petrov–Galerkin schemes (SUPG/PSPG).

The stabilisation serves two purposes: First, it provides stability to the velocity field uh in convection dominated regions
of the domain. Second, it circumvents the Babuška–Brezzi condition, which standard mixed Galerkin methods are required
to satisfy. Thus, it effectively renders a smooth pressure field without jeopardising the weak enforcement of the continuity
condition.

The stabilisation term employed here reads

Gstabðuh; ph; duh; dphÞ ¼
Xnel

e¼1

Z
Xe
½suqðrx̂hduhÞðuh � v̂hÞ þ sprx̂hdph� � ½qð _uh þ ðrx̂h uhÞðuh � v̂hÞ � f Þ þ rx̂h ph�dv. ð17Þ

We note that due to the absence of the viscous term in the second pair of brackets in (17), the stabilisation term does not
vanish as the spatial discretisation is refined. Consequently, the choice of the weighting parameter s and its limit behaviour
are essential for the success of the methodology. In the experience of the authors, it has proved useful (see also e.g. [9]) to
employ two parameters, here denoted as su and sp, and hence treat the two stabilisation purposes separately.

Both stabilisation parameters su and sp are defined as follows:

s ¼ he

2kue � v̂ekq z; z ¼ b1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b1

b2Ree

� �2
s ; Ree ¼ ku

e � v̂ekheq
2l

; ð18Þ

but they have different scaling parameters b1 and b2, which may be set independently. The characteristic element size, the
convective velocity in the element centroid and the element Reynolds number are represented by h, ue � v̂e, and Ree, respec-
tively. Thus, su and sp are constant within every element and, hence, the stabilisation terms are discontinuous across the
inter element boundaries, which explains the summation of integrals in (17). The parameters b1 and b2 define the limit of z

as Ree!1 and the derivative dz/dRee at Ree = 0, respectively. The examples in Section 9 have all been obtained with
b1 ¼ 1; b2 ¼ 1

3

� �
for su and (b1 = 30, b2 ¼ 1

10
) for sp. This specific choice makes the parameter su identical to the expression

which yields nearly exact solutions for the one-dimensional advection–diffusion equation (see [6] and references therein). In
this work, the characteristic element size he is defined as the diameter of the circle, the area of which corresponds to the
finite element e.

The choice of the formula in (18) is rather heuristic, and many different expressions have been introduced in literature
(see e.g. [9,12,37,43]). In some early publications (e.g. [9]) it was suggested that s should vanish as the discretisation in time
is refined. In the context of a finite difference time integration scheme, the expressions (18), which do not depend on the
time increment, have been shown to yield a robust method, allowing, to a wide extent, independent refinement of the dis-
cretisations of space and time (see [37] for a more detailed discussion and numerical verification).
4. Motion of the fluid finite element mesh

At this stage, the motion of the fluid mesh is arbitrary except for its outline: On the interface boundary Ch
f�s, Eq. (8) has

to be satisfied. On the other parts of Ch, the user prescribes at least the motion of the nodes normal to the current config-
uration of the boundary. Note that, eventually, there may be regions of Xh, which are not required to adapt to a new geo-
metry, since they are far away from the moving structure. In such regions we set v̂h ¼ 0, and the flow problem becomes
purely Eulerian.
4.1. Motion of internal nodes

The movement of the internal finite element nodes should be chosen such that the mesh quality does not deteriorate as
the displacements of the solid structure become large. For this purpose, many different algorithms have been suggested in
literature (see e.g. [44–46,5] and references therein).
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In this work the following techniques are used:

• Pseudo-elastic technique. In this approach, the mesh is simply assumed to represent an elastic solid body. A standard
Lagrangian finite element technique typically employed in solid mechanics can then be used to adapt the mesh to the
new geometry of the domain.
For small distortions of the geometry the linear elastic model is sufficient. In the presence of large deformations of the
fluid domain a hyperelastic model may be more suitable. Note that the mesh need not necessarily represent an elastic
continuum. In literature, alternative methodologies have been suggested in which the mesh is, for example, assumed
to be a network of elastic springs (see e.g. [46] and references therein). In the pseudo-elastic approach used in this work,
the mesh is treated as a simple hyperelastic Neo–Hookean continuum, with two parameters lm and Km, representing the
shear and bulk modulus, respectively. For the two-dimensional situation the plane strain condition is employed.

• Optimisation of mesh quality. A simple strategy to compute the mesh motion can be defined by enforcing the condition,
which requires that the mesh quality, with respect to a certain criteria, is optimal at all times t 2 I. In this work, the
chosen criteria is the ratio of the inner and outer circles of the triangular or tetrahedral finite element. Thus, the mesh
movement satisfies

W ¼
Xnel

e¼1

re
out

re
in

� �
) MIN; ð19Þ

which is a simplified version of the expression used in [31]. The quantities re
in and re

out denote the inner and the outer radii
of a triangular or tetrahedral finite element. The equations, which determine the nodal positions x̂f

i , then read

oW
ox̂f

i

¼ 0; i ¼ 1; 2; . . . ;N f ; ð20Þ

where Nf denotes the number of nodes in the mesh interior. In the authors’ experience this methodology renders accept-
able meshes even for very distorted geometries. Note that also the initial mesh should satisfy (19).

Both strategies can be fully linearised and thus allow the employment of the Newton–Raphson procedure to solve
for the new nodal positions. This is of particular importance with respect to the overall solution procedure described in
Section 8.

The employment of large time steps in problems involving severe deformations of the domain often requires the adap-
tation of the mesh to substantial changes of the geometry within one time step. In such cases the Newton–Raphson pro-
cedure may fail to converge. In this work, this problem is overcome by increment cutting within the mesh update
procedure, i.e. the new displacement of the boundary is applied in increments if necessary.

4.2. Motion of nodes on the interface boundary

Provided that the initial boundary of the fluid mesh resolves ‘‘nicely’’ the surface of the solid structure, there is normally
no need to allow for any tangential movement of the fluid nodes along the interface. The fluid mesh boundary, similarly to
the fluid particles, can then be required to ‘‘stick’’ to the surface of the structure. Thus, we satisfy Eqs. (7) and (8) by
employing a purely Lagrangian description of the interface, i.e.

v̂h ¼ uh ¼ Ið _dhÞ 8ðx̂h; tÞ 2 Ch
f�s � I ; ð21Þ

where the vector _dh denotes the finite element approximation of the structural velocity field _d. In order to allow for non-
matching fluid and structural meshes, it is necessary to define an appropriate interpolation operator Ið�Þ. This issue is
addressed in detail in Section 7.

The current configuration of the interface boundary Ch
f�s is then described by

x̂h ¼ Iðxh
s0 þ dhÞ 8ðx̂h; tÞ 2 Ch

f�s � I ; ð22Þ

where xh
s0 denotes the discretisation of the initial configuration of the solid structure.

5. Finite element formulation for the solid structure

The fluid–structure interaction solution methodology adopted in this work does not impose any restriction on the spe-
cific choice of structural element to be used. Importantly, the structural mesh at the interface is not required to match the
fluid finite element mesh. Thus, any appropriate standard finite element method may be used for the discretisation of the
solid structure.



5760 W. Dettmer, D. Perić / Comput. Methods Appl. Mech. Engrg. 195 (2006) 5754–5779
The starting point of a structural finite element method is the balance of momentum as given by (10) or by an appro-
priate equivalent representation. A standard finite element formulation of (10) reads as follows: For any t 2 I, find dh 2Sh

such that for any dd 2Vh

Gsðdh; ddhÞ ¼
Z

Xh
ðddhqð€dh � f Þ þ rddh : rðdhÞÞdv�

Z
Ch

h

ddh � hh da ¼ 0; ð23Þ

where Sh and Vh are the appropriate finite element spaces and Xh is a finite element discretisation of the solid domain.
Introducing the vector of the nodal displacements d, the formulation (23) can be rewritten in an equivalent matrix form

as

M€dþ C _dþKd ¼ P; ð24Þ
where the matrices M;C and K are denoted, respectively, as the mass, damping and stiffness matrices. It should be noted
that some structural finite elements, such as beam and shell elements, also include the rotational degrees of freedom in addi-
tion to the translational displacements. We assume such rotations to be included in the vector d.

6. Integration in time

In order to complete the discretisation of the finite element formulations (15) and (23), it remains to apply a numerical
time integration scheme. The most popular choices are standard discrete time stepping schemes and the so-called time finite

element methods. In the context of fluid mechanics, both approaches have been extensively discussed in recent publications
(see e.g. [26,31] for discrete and [7,13,50] for time finite element methods).

In [37,5], we have provided a detailed comparison of implicit time integration schemes with respect to incompressible
Newtonian fluid flow in the Eulerian framework. As a result, the discrete generalised-a method has been suggested as a
very efficient and robust alternative to the more expensive time finite element methods. The generalised-a method has orig-
inally been developed in [35] for the second order differential equation arising in solid dynamics, but has been adapted to
the first order problem of fluid mechanics in [36]. For linear problems the scheme can be shown to be unconditionally stable
and second order accurate (see [35–37]). Furthermore, it enables user-controlled high frequency damping, which is desir-
able especially for coarse discretisation in space and time. This is achieved by specifying the single integration parameter,
which, for linear problems, can be identified with the spectral radius q1 associated with very large time steps. In the fol-
lowing the application of the generalised-a method to Eqs. (15) and (23) is described.

First, the time interval I = [0,T] is replaced by a sequence of discrete time instants tn, n = 0,1,2, . . . ,Ntime with t0 = 0 and
tN time

¼ T . The time step size Dt = tn+1 � tn is allowed to vary.

6.1. Fluid solver

The generalised-a method is used to express uh and its time derivative _uh in (15) in terms of uh and _uh at the discrete time
instants tn and tn+1. These values are henceforth denoted as uh

n; u
h
nþ1; _uh

n and _uh
nþ1.

In [36], the generalised-a method is given as

uh
nþ1 ¼ uh

n þ Dtð1� cfÞ _uh
n þ Dtcf _uh

nþ1; ð25Þ
uh

nþaf
f
¼ ð1� af

f Þuh
n þ af

f uh
nþ1; ð26Þ

_uh
nþaf

m
¼ ð1� af

mÞ _uh
n þ af

m _uh
nþ1; ð27Þ

where cf, af
m and af

f are integration parameters. These equations can be rewritten as

uh
nþaf

f
¼ ð1� af

f Þuh
n þ af

f uh
nþ1; ð28Þ

_uh
nþaf

m
¼ 1� af

m

cf

� �
_uh

n þ
af

m

Dtcf
ðuh

nþ1 � uh
nÞ; ð29Þ

_uh
nþ1 ¼

1

Dtcf
ðuh

nþ1 � uh
nÞ �

1� cf

cf
_uh

n. ð30Þ

In GGal and Gstab, given, respectively, by the relations (16) and (17), the expressions uh and _uh are now replaced by uh
nþaf

f
and

_uh
nþaf

m
, respectively. Thus, the fluid velocity and its time derivative in (15) are expressed exclusively in terms of the unknown

uh
nþ1 and in terms of the quantities uh

n and _uh
n, which are known from the solution at the previous time instant. Due to its

nature as Lagrangian multiplier, which enforces continuity of the flow, the pressure should not be subjected to a time inte-
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gration scheme, but be computed independently for each time increment. Once uh
nþ1 has been computed, the quantity _uh

nþ1

can be obtained from (30).
The integration parameters are reduced to one independent control variable as follows:

cf ¼ 1

2
þ af

m � af
f ; af

m ¼
1

2

3� qf
1

1þ qf
1
; af

f ¼
1

1þ qf
1
; ð31Þ

where qf
1 has to be chosen such that 0 6 qf

1 6 1. For qf
1 ¼ 1, the method is identical to the trapezoidal rule, whereas the

numerical damping of the method increases with smaller values of qf
1. For a detailed study of the generalised-a method in

combination with stabilised finite elements we refer to [37].

6.2. Solid solver

Similarly to Section 6.1, the quantities dh
n;

_dh
n and €dh

n, n = 0,1, . . . ,Ntime are introduced. For the time integration of the
finite element formulation of the structure (23), we then employ the generalised-a method as presented by Chung and Hul-
bert in [35] for the second order initial value problems.

Thus, we define

dnþ1 ¼ dn þ Dt _dn þ Dt2 1

2
� bs

� �
€dn þ bs€dnþ1

� �
; ð32Þ

_dnþ1 ¼ _dn þ Dtðð1� csÞ€dn þ cs€dnþ1Þ; ð33Þ
dnþas

f
¼ ð1� as

f Þdn þ as
f dnþ1; ð34Þ

_dnþas
f
¼ ð1� as

f Þ _dn þ as
f

_dnþ1; ð35Þ
€dnþas

m
¼ ð1� as

mÞ€dn þ as
m

€dnþ1; ð36Þ

where dnþas
f
; _dnþas

f
; €dnþas

m
, are the quantities to be employed in (23).

Similarly to the velocity uh
nþ1 in Section 6.1, one unknown kinematical quantity associated with time instant tn+1 can be

chosen as the only independent variable. Eqs. (32)–(36) can then be rewritten to express all other kinematical data at the
time instants tn+1, tnþas

m
and tnþas

f
in terms of this primary unknown and the known solution at tn. In the context of solid

mechanics, it is common to employ the displacements dh
nþ1 as primary unknowns, but it is equally straightforward to

rephrase (32)–(36) to render expressions in terms of the velocity _dh
nþ1.

Chung and Hulbert [35] have shown that, for linear problems, the following formula for the time integration parameters
is optimal

bs ¼ 1

4
ð1þ as

m � as
f Þ

2
; cs ¼ 1

2
þ as

m � as
f ;

as
f ¼

1

1þ qs
1
; as

m ¼
2� qs

1
1þ qs

1
.

ð37Þ

Similarly to (31), the scalar qs
1 can be identified as the spectral radius associated with infinitely large time steps and has to

be chosen by the user such that 0 6 qs
1 6 1. Note that (37) differs from (31).

6.3. Mesh update

It still remains to discretise the movement of the fluid mesh in time. Therefore, the configuration x̂h
n and the velocity field

v̂h
n at the discrete time instants tn, n = 0,1,2, . . . ,Ntime are introduced. In this work, x̂h

n and v̂h
n are related by a simple gen-

eralised midpoint scheme

v̂h
nþ1 ¼

1

Dtcm
ðx̂h

nþ1 � x̂h
nÞ �

1� cm

cm
v̂h

n; ð38Þ

where cm is an integration parameter to be chosen such that 1
2
6 cm

6 1. In this work, we set cm = cf (see (31)1), and thus
make it dependent on qf

1. The following expressions are then employed in the weak form (15)

x̂h
nþaf

f
¼ ð1� af

f Þx̂h
n þ af

f x̂h
nþ1; ð39Þ

v̂h
nþaf

f
¼ ð1� af

f Þv̂h
n þ af

f v̂h
nþ1; ð40Þ

where af
f is given by (31)3. The vector field x̂h

nþaf
f

defines the configuration, which is employed in the computation of the
integrals in (15).
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Importantly, the mesh update strategy discussed in Section 4.1 is applied to the position of the internal nodes of the
finite element mesh at tn+1. In the context of a mesh update algorithm based on a quality criteria like (19), the mesh con-
figuration given by x̂h

nþaf
f

therefore becomes an interpolant between two ‘‘optimal’’ configurations.

7. Modelling of the interface and formulation of the overall problem

Prior to further discussion, it is convenient to introduce a notational representation for the unknown quantities asso-
ciated with the finite element nodes of the fluid and the solid meshes. Thus, we define

uf�s : nodal values of the fluid velocity uh on Cf�s;

~uf ¼ fuf ;pg : all nodal values of uh except those already in uf�s

and all nodal values of the fluid pressure ph;

v̂f�s : nodal values of the mesh velocity v̂h on Cf�s;

v̂f : all nodal values of v̂h except those in v̂f�s;

x̂f�s : positions of the fluid nodes on interface boundary Cf�s

associated with fluid mesh configuration x̂h;

x̂f : positions of all fluid nodes subjected to mesh moving

algorithm ðSection 4:1Þ;
ds�f : nodal values of the translational structural

displacements in dh on Cs�f ;

ds : all nodal values of dh except those already in ds�f

and; if relevant; all rotational degrees of freedom

of the structure:

ð41Þ
7.1. Kinematic consistency of the discretised interface

After the spatial and temporal discretisation of the fluid flow and the solid structure in the previous sections the remain-
ing task is to link the fluid and the structural finite element meshes along the interface boundary, such that the boundary
conditions (7)–(9), (13) and (14) are satisfied with sufficient accuracy.

In order to resolve the complex fluid flow in the boundary layer most practical applications require the discretisation of
the fluid domain near the interface to be denser than that of the structure. Consequently, the kinematics of the interface is
typically determined by the discretisation of the surface of the solid structure. Therefore, in order to satisfy the kinematic
boundary conditions along the interface we have chosen a simple interpolation strategy based on the finite element discret-
isation of the solid structure.

It then follows (see Fig. 1) that the boundary conditions (7), (8) and (13) may be satisfied by introducing the discrete
counterparts of Eqs. (22) and (21), respectively, as

x̂f�s
A ¼ IAðxs�f

B;0 þ ds�f
B Þ ¼

XM s

B¼1

cB;Aðxs�f
B;0 þ ds�f

B Þ; ð42Þ

uf�s
A ¼ v̂f�s

A ¼ IAð _ds�f
B Þ ¼

XMs

B¼1

cB;A
_ds�f

B ð43Þ

and, consequently,

_uf�s
A ¼ IAð€ds�f

B Þ ¼
XM s

B¼1

cB;A
€ds�f

B ; ð44Þ

where IAð�Þ is the transfer operator, introduced in (21) and (22), for fluid node A. In Eqs. (42)–(44), the number of solid
nodes which describe one face or edge of a structural element is denoted by Ms. Thus, we have Ms = 2 for quadrilateral
two-dimensional continuum elements or Ms = 4 for three-dimensional brick elements. The vectors x̂f�s

A ;uf�s
A ; v̂f�s

A and _uf�s
A

are associated with node A of the fluid mesh. Similarly, ds�f
B ; _ds�f

B and €ds�f
B are the displacement, velocity and acceleration of

the solid finite element node B at the interface boundary. The vector xs�f
B;0 denotes the initial position of the structural node

B. The coefficient cB;A ¼ N s
BðnAÞ represents the value of the structural shape function associated with node B and evaluated



Fig. 1. Fluid–solid interface, interpolation of data based on the finite element discretisation of the solid structure.

W. Dettmer, D. Perić / Comput. Methods Appl. Mech. Engrg. 195 (2006) 5754–5779 5763
at the position of the fluid node A, as shown in Fig. 1. We note that within the strategy described in this work the coef-
ficients cB,A do not change throughout the simulation.

It is shown later in Section 7.2 that the introduction of the kinematical relations (42)–(44) into the combined weak form
of the overall problem leads to implicit fullfilment of the traction boundary conditions (9) and (14).

The choice of a slightly different time integration scheme for the fluid and the structure, as discussed in Section 6, is
incorporated into the interface kinematics by requiring the Eqs. (42)–(44) to hold at the discrete time instants tn, tn+1, . . .
As a consequence of this, the quantities uf�s

nþaf
f
; v̂f�s

nþaf
f

and ds�f
nþas

f
, which represent linear interpolations of the velocities at the

time instants tn and tn+1, do not necessarily satisfy the condition (43) exactly. The same applies to the interpolated nodal
positions and accelerations. The authors have not experienced any numerical problems associated with this small
inconsistency.

7.2. Coupled overall problem

For notational convenience, we henceforth define the representation of the nodal quantities in (41) to be associated with
the time instant tn+1. By combining the equations presented in the previous sections, the complete discrete problem may
then be expressed as follows: For any variation d _ds�f ; dds and d~uf , find _ds�f ;ds; ~uf ; x̂f , such thateGf

Galþstabð~uf ;uf�sð _ds�fÞ; x̂f ; x̂f�sð _ds�fÞ; d~uf ; d _ds�fÞ þ eGsðds; _ds�f ; dds; d _ds�fÞ ¼ 0; ð45Þ
~mðx̂f ; x̂f�sð _ds�fÞÞ ¼ 0. ð46Þ

Eq. (45) represents the combined weak forms (15) and (23), whereas the system of equation (46) is based on one of the mesh
update procedures discussed in Section 4.1. The relations given by the time integration scheme in Section 6 have been em-
ployed to eliminate v̂f�s; v̂f ; _uf�s; _uf ;ds�f ; _ds; €ds�f and €ds associated with tn+1 as well as all kinematical data interpolated be-
tween the two time instants tn and tn+1. The equations given in Section 6.2 are also implicitly included in the termseGsðds; _ds�f ; dds; d _ds�fÞ and x̂f�sð _ds�fÞ to recover the structural displacements at the interface ds�f from the velocities _ds�f .

After the elimination of the variational quantities, Eq. (45) may be rewritten in terms of nodal forces f~gf ; gf�sg and
fgs; gs�fg associated, respectively, with the weak forms of the fluid and the solid. Thus, we obtain

~gfð~uf ;uf�sð _ds�fÞ; x̂f ; x̂f�sð _ds�fÞÞ ¼ 0; ð47ÞXM f

A¼1

gf�s
A ð~uf ;uf�sð _ds�fÞ; x̂f ; x̂f�sð _ds�fÞÞcB;A þ gs�f

B ð _ds; _ds�fÞ ¼ 0; ð48Þ

gsðds; _ds�fÞ ¼ 0; ð49Þ

whereby (48) applies to every structural node B on the interface boundary of the solid mesh and Mf is the fluid counterpart
of Ms. The discrete relation (48) corresponds to the principle of virtual work applied to the nodal forces gf�s and gs�f and is
based on the kinematics of the interface boundary of the structural finite element mesh. Thus, the boundary conditions (9)
and (14) are satisfied in a weak sense, similar to the treatment of any standard von Neumann boundary condition in the
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finite element framework. More information on the transfer of kinematical data and forces across the fluid–structure inter-
face is given in e.g. [47].

We finally introduce the following compact representation of the overall problem

gfð~uf ; x̂f ; _ds�fÞ ¼ 0; nf ¼ ðN f � ðndim þ 1Þ þ N f�sÞ; ð50Þ
gið~uf ; x̂f ; _ds�f ;dsÞ ¼ 0; ni ¼ ðN s�f � ndimÞ; ð51Þ
gsðds; _ds�fÞ ¼ 0; ns ¼ ðN s � ðndim þ mÞ þ N s � mÞ; ð52Þ
mðx̂f ; _ds�fÞ ¼ 0; nm ¼ ðN f � ndimÞ; ð53Þ

where the numbers of scalar equations, which constitute the systems (50)–(53), are given as nf, ni, ns and nm, respectively
identifying the number of degrees of freedom of the fluid, the interface, the structure and the fluid mesh. In the above set of
equations, the relations (47)–(49) have been rewritten, respectively, as (50)–(52), whereby the vector gi denotes the com-
bined nodal residual forces on the fluid–structure interface. The mesh update (46) is represented by Eq. (53). The integers
Nf and Ns, Nf�s and Ns�f denote, respectively, the numbers of internal nodes and the numbers of interface boundary nodes
of the fluid and the solid meshes. The space dimension is given by ndim. Furthermore, we allow for m degrees of freedom per
structural finite element node in addition to the ndim translational displacements. Such degrees of freedom may include
structural rotations or temperatures, which are not directly coupled with the fluid flow at the interface. Note that, similarly,
the fluid pressure is not transferred explicitly across the interface since its effect on the structural deformation is accounted
for by the transfer of the nodal forces via Eq. (51). In the subsystems (50), (52) and (53), the numbers of equations may
change due to eventual standard Dirichlet boundary conditions or due to prescribed Eulerian areas of the fluid mesh.
Clearly, the systems (50)–(53) are strongly coupled and highly non-linear.

7.3. Extension to a more general and modular framework

At the outset, the derivation of system (50)–(53) was based on identifying the kinematics of the interface with the dis-
cretisation of the structural surface. However, the coupled system (50)–(53) may also be obtained from a more generic
framework based on the introduction of an independent discretisation of the interface, as shown schematically in
Fig. 2. The kinematical ‘interface degrees’ of freedom, which we represent by the vector ui, can then be linked with both
the fluid and the solid, similarly to the solid-to-fluid interpolation outlined above. The relations between the fluid, the solid
and the independent interface are illustrated in Fig. 3. In this case the expression _ds�f in (50)–(53) has to be replaced by ui.

We note that this extended framework does not depend on the structural discretisation being coarser than that of the
fluid domain. It allows a more modular computer implementation and thus facilitates future extensions of the methodol-
ogy. Such extensions may include, for instance, independent remeshing of the fluid or the solid domains. It may also prove
useful to employ a ‘mortar’ or related methodologies (see e.g. [48–50]) for the data transfer between the adjacent phases.
This can be incorporated into the framework described in this work by defining a more elaborate mapping operator Ið�Þ.

Furthermore, it is pointed out that the computational cost of solving (50)–(53) depends significantly on the number of
‘interface degrees’ of freedom. In many cases, the choice of a coarse independent interface discretisation may thus allow to
obtain a good computational model of the fluid–structure interaction at low computational cost.

Finally, the introduction of independent interface degrees of freedom facilitates the application of the computational
framework to different physical problems such as fluid–rigid body interaction or free surface flow (see [3–5]).
Fig. 2. General interface modelling, transfer based on finite element type interpolation of the interface domain.



Fig. 3. Domain decomposition based on introduction of interface d.o.f. ui.
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8. Solution algorithm

Given the solution at the time instant tn, the non-linear coupled system (50)–(53) has to be solved for ~uf ; x̂f ;ds and ui at
the next time instant tn+1. The solution strategy developed in the course of this work is essentially based on the Newton–
Raphson method.

The methodology can briefly be described as follows: On the basis of the solution at tn an initial guess is made for ~uf and
ui at tn+1. Next, the positions of the fluid nodes x̂f and the internal degrees of freedom ds of the structure are adjusted to the
new configuration of the interface as given by ui (fluid mesh solver (53) and structural solver (52)). The derivatives ox̂f=oui

and ods=oui are computed. Subsequently, the residual forces gf and gi are evaluated. If the tolerances are met, then the
procedure can be aborted to proceed with the next time step. Otherwise, the linearisations of gf and gi with respect to
the unknowns ~uf and ui are computed. To this end, all partial derivatives of gf and gi are calculated and, by following
the chain rule, reduced to the exact derivatives with respect to ~uf and ui. The linearisations of gf and gi can then be solved
for the increments of ~uf and ui (combined fluid + interface solver). The unknowns are updated, and the complete procedure
is repeated for the improved values of ~uf and ui.

A summary of the algorithm is given in Box 1. Henceforth, the execution of steps 1–7 is referred to as one ‘overall New-
ton step’.

In the following, some implementation details of the algorithm are discussed. The numbering of the comments refers to
the steps given in Box 1.

Box 1: Partitioned Newton–Raphson procedure to solve the system (50)–(53)
1. estimate ~uf ;ui

2. fluid mesh solver mðx̂f ;uiÞ ¼ 0

(a) compute x̂f on the basis of ui

(b) compute
ox̂f

oui
from

om

ox̂f

ox̂f

oui
¼ � om

oui

3. solid solver gsðds;uiÞ ¼ 0

(a) compute ds on the basis of ui

(b) compute
ods

oui
from

ogs

ods

ods

oui
¼ � ogs

oui

4. compute residuals gfð~uf ; x̂f ;uiÞ; gið~uf ; x̂f ;ui;dsÞ,
if gf ; gi < tol, then exit

5. compute derivatives

A ¼ ogf

o~uf
; B ¼ ogf

oui
þ ogf

ox̂f

ox̂f

oui

C ¼ ogi

o~uf
; D ¼ ogi

oui
þ ogi

ox̂f

ox̂f

oui
þ ogi

ods

ods

oui

6. solve combined fluid + interface solver

A B
C D

� �
D~uf

Dui

	 

¼ � gf

gi

	 

;

~uf

ui

	 

 ~uf

ui

	 

þ D~uf

Dui

	 

7. goto 2.
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1. At the beginning of each time step, the solution at the previous time instant can be employed as the initial guess for ~uf

and ui. An improved guess may be obtained by employing a more sophisticated extrapolation in time based on the pre-
vious solutions. Note, however, that, in the examples presented in Section 9, such strategies have rarely led to better
performance of the overall scheme. This proves the high degree of non-linearity of the problems considered, and also
suggests the restriction of explicit solution techniques to small time steps.

2. In this step, the nodal positions x̂f of the fluid mesh are adjusted to the new configuration of the rigid body (see Sections
4.2 and 4.1). The mesh update strategies discussed in Section 4.1 are non-linear and thus, a Newton–Raphson procedure
is employed. Once x̂f has been computed such that mðx̂f ;uiÞ ¼ 0, we may write, for small dx̂f and dui,

om

ox̂f
dx̂f þ om

oui
dui ¼ 0 ð54Þ

and consequently,

om

ox̂f

ox̂f

oui
¼ � om

oui
. ð55Þ

Thus, the ith column of the derivative matrix ox̂f=oui can be obtained from a system of linear equations, where the ith
column of �om=oui is used as the right hand side vector. The matrix om=ox̂f coincides with the linearisation matrix from
the last step of the Newton procedure used to determine x̂f for the given ui. Thus, conveniently, the LU-decomposition
of om=ox̂f is still available. The derivative ox̂f=oui is then obtained from a simple backward and forward substitution for
different right hand sides. Importantly, by applying this strategy, no inverse matrices need to be assembled, and costly
matrix multiplication is avoided.
For larger problems, the computational cost involved in these operations is dominated by the repeated backward and
forward substitutions. Thus, it is proportional to the number of columns in ox̂f=oui and om=oui, which corresponds to
the number of degrees of freedom of the discretised interface ni.

3. The actions to be taken in this step are very similar to those in step 2. In the solid solver, we compute ds on the basis of
the current ui by means of a Newton–Raphson procedure such that (52) is satisfied and, subsequently, we employ the
structural stiffness matrix of the last Newton step to compute the derivative ods=oui from the relation

ogs

ods

ods

oui
¼ � ogs

oui
. ð56Þ

Similarly to step 2, the computational cost associated with the backward and forward substitutions is proportional to
the number of degrees of freedom of the interface ni.

4. This step requires the evaluation of the residuals gf and gi. If the tolerances are met, then solution at time instant tn+1 is
given by the current values of ~uf ; x̂f ;ds and ui. One can then proceed with the next time step.

5. The partial derivatives of the residual vectors gf and gi with respect to ~uf ; x̂f ;ds and ui are computed. Following the
chain rule, the derivatives oð�Þ=ox̂f and oð�Þ=ods are multiplied by the matrices ox̂f=oui and ods=oui, respectively. The
exact linearisation of the combined residual vector fgf ; gig with respect to the unknowns ~uf and ui is then fully defined.
The numbers of scalar multiplications required for the matrix operations are obtained as

ogf

ox̂f

ox̂f

oui
! nf � nm � ni; ð57Þ

ogi

ox̂f

ox̂f

oui
! ni � nm � ni; ð58Þ

ogi

ods

ods

oui
! ni � ns � ni. ð59Þ

For a typical problem, we have nf > nm > ns > ni. Thus, it follows that the multiplications (58) and (59) are rather inex-
pensive, whereas (57) is clearly more involving. Therefore, this part of the algorithm should be implemented carefully,
taking all possible advantage of the sparseness of ogf=ox̂f .

6. The pattern of non-zero entries of a typical system matrix of the combined fluid + interface solver is displayed in Fig. 4.
The pattern is almost symmetric and the degree of unsymmetry depends on the number of interface degrees of freedom
ni. In this work, a direct sparse solver is employed for the solution of the linear system.
The interaction of fluid flow with a stiff structure may lead to an ill-conditioned system matrix. In such cases, a standard
preconditioning technique may be employed. For the choice of the optimal strategy it should be noted that any ill-con-
ditioning arises from the contribution of the structure to part D of the matrix, which is relatively small. The matrix is
regular even without the contribution of the structure. It is also pointed out, that the interaction of fluid flow with very
stiff structures can be solved by means of basic iterative schemes (e.g. block Gauß–Seidel, see e.g. [40,39]). However,
such strategies fail or converge poorly when applied to the interaction of fluid flow with flexible structures and large



Fig. 4. Typical system matrix of the combined fluid + interface solver.
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structural deformations, which is indeed the focus of this work. The solutions of the examples presented in Section 9
have been obtained without any preconditioning.

For the steps 2, 3 and 5, various element derivative matrices need to be evaluated. The derivative ogf=ox̂f is particularly
tedious due to the formulation of (16) and (17) in the current mesh configuration. Thus, the element area and all shape
function derivatives need to be linearised. However, the computation of the derivatives is considered to be a straightfor-
ward exercise and, therefore, it is not addressed any further in this work.

The computer memory needed for storing the global matrices ox̂f=oui and ods=oui is smaller than the workspace typi-
cally required by the combined fluid + interface solver. Provided an efficient computer implementation is employed and
provided ni is relatively small, the memory requirements associated with the resolution of the interaction do not exceed
those of the fluid and the structural subsolvers.

Finally, we recall that the solution strategy outlined in Box 1 performs most efficiently for problems with large Eulerian
parts of the fluid mesh and small numbers of structural and interface degrees of freedom, i.e. nm� nf, ns� nf, ni� nm,
respectively. For small ni and ns, the proportions of computational time spent in the different steps of the algorithm resem-
ble those associated with the solution methodology for fluid–rigid body interaction described in [4]. For problems with
larger numbers of interface degrees of freedom, the computation of the derivatives in the steps 2 and 3 and the matrix mul-
tiplications in step 5 require a larger proportion of computational time. However, the optimal convergence behaviour,
which results from the exact linearisation of the overall problem, may still make the methodology at hand very competitive
in comparison to alternative strategies.

9. Numerical examples

9.1. Flow-induced vibration of a flexible beam

This model problem has been presented by Wall [51,19] and later by Hübner et al. [52,53] and Steindorf [54] to test their
numerical solution strategies for fluid–structure interaction problems.

A fixed square rigid body is submerged in incompressible fluid flow. Far away the flow is uniform with the velocity u1.
A flexible thin beam is attached to the rigid body in the centre of the downstream face. In the undeformed configuration the
beam is aligned with the far field flow. The vortices, which separate from the corners of the rigid body, generate lift forces
which excite oscillations of the flexible beam.

The geometry and the boundary conditions are given in Fig. 5. The material parameters of the fluid and the solid are
taken from Wall [19] as, respectively, lf = 1.82 · 10�4, qf = 1.18 · 10�3 and ls = 9.2593 · 105, Ks = 2.78 · 106, qs = 0.1.
The shear and bulk moduli ls and Ks correspond to the Young’s modulus E = 2.5 · 106 and the Poisson’s ratio m =
0.35. Plane stress conditions are assumed to hold for the solid. The inflow velocity is chosen as u1 = 51.3. Thus, the Rey-
nolds number is obtained as Re = qfDu1/lf = 333, whereby D = 1 is the diameter of the square rigid body.

Three different numerical representations of the flexible structure are considered: First, it is discretised with 20 nine
noded and fully integrated finite elements of equal size with only one element in the thickness direction of the beam
(A). We apply the plane stress condition and assume small strain elastic behaviour. This corresponds to Wall [19]. The
second model (B) differs from the first only by the employment of Neo–Hooke type large strain elasticity based on the fol-
lowing stress–strain relation

r ¼ lJ�
5
3 B � 1

3
trðBÞI

� �
þ K

J 2 � 1

2J
I ; ð60Þ



Fig. 5. Flow induced vibrations of a flexible beam: geometry and boundary conditions.
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where J is the determinant of the deformation gradient F, B = FFT is the left Cauchy–Green tensor and r denotes the Cau-
chy stress tensor. Thirdly, a representation with 20 linear geometrically exact beam elements is considered (C). The element
formulation employed is described in detail in [55] and uses one-Gauß-point integration to avoid shear locking. The fol-
lowing parameters can be computed from the above given data: EA = 1.5 · 105, EI = 45.0 and jGA = 4.63 · 104.

All translational structural degrees of freedom at the interface are employed as interface degrees of freedom. The kine-
matical data of the fluid at the interface is obtained from the interface degrees of freedom by linear interpolation. We note
that the continuum models A and B and the beam model C of the structure render, respectively, 80 or 20 interface nodes,
which shall result in a substantial difference of computational time. The employment of fewer interface nodes for the con-
tinuum models A and B is not advantageous, since it results in unwanted stiffening of the thin structure.

Since the thickness of the beam elements is neglected, different fluid meshes are needed. Therefore, three meshes with
4336, 12,330 (for the interaction with models A, B, respectively) and 4564 elements (for the interaction with model C)
are generated. Details of the meshes are displayed in Fig. 6. The time integration parameters are set to qf

1 ¼ 0:8 for the
fluid and qs

1 ¼ 0:5 for the solid structure. The update of the positions of the internal nodes of the fluid mesh is performed
according to the strategy based on (19). Initially, the fluid and the structure are at rest, and at t = 0 the inflow velocity u1 is
applied instantaneously. The simulations are performed for different time step sizes Dt.

The diagrams in Figs. 7–9 show the evolution of the displacement d of the tip of the flexible beam in time. Some typical
flow patterns are displayed in the vorticity diagrams in Fig. 10. The convergence of the solution procedure is demonstrated
in Tables 1 and 2.

The following observations are made on the basis of the numerical results:

• Every simulation renders an unsteady periodic long term response of the flexible beam. The build-up of the oscillations
takes approximately 2 time units. For all discretisations considered, the amplitudes of the oscillating tip displacement d

lie between 1.1 and 1.4. The average frequency �f is obtained between 2.96 and 3.31. This interval contains the lowest
eigenfrequency of the beam f1 � 3.03 and also agrees well with the results obtained in [19,52,54].

• It is evident from Fig. 7 that the deviation of the responses of the structural models A, B and C is relatively small.
• Figs. 8 and 9 demonstrate that, in some cases, different temporal and spatial discretisations lead to a modulation of the

oscillation of the beam tip or to the superposition with a small amplitude oscillation at a higher frequency. This is due to
high frequency effects, which are resolved if the discretisation is sufficiently fine, but otherwise damped out. In fact, the
second eigenfrequency of the small strain structural model corresponds to T2 � 0.053, which is resolved by Dt = 0.005,
but not by Dt = 0.02. Therefore, a conclusive study of the amplitude modulation and the high frequency effects would
require very dense spatial and temporal discretisations.

• In all cases, the convergence of the absolute residuals of the combined fluid + interface solver and of the subsolvers is
asymptotically quadratic. This is illustrated by Tables 1 and 2, which are associated with two specific simulations.
9.2. Flow through a channel with a flexible wall

This preliminary numerical study is motivated by the work of Pedley and co-workers [56,57]. We consider the two-
dimensional flow through a channel with a flexible wall, i.e. a section of the channel wall consists of a Neo–Hooke elastic



Fig. 6. Flow induced vibrations of a flexible beam: fluid finite element meshes; (a) mesh with 4336 elements, (b) detail of meshes with 4336, (c) 12,330, and
(d) 4564 elements. The mesh with 4564 elements is employed for the interaction with beam elements C.
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membrane, otherwise the wall is fixed in space. Similar problems arise in the area of biomechanics, where the objective is to
model the blood flow through the flexible vessels in the human body.

At the inflow boundary the prescribed flow profile corresponds to undisturbed Poiseuille flow. The average inflow veloc-
ity is chosen as �uin ¼ 1. The geometry and the boundary conditions are given in Fig. 11. The fluid properties are set to
lf = 0.002 and qf = 1. The Reynolds number is obtained as Re ¼ �uinDqf=lf ¼ 500, where D = 1 is the width of the channel.
The flexible membrane is incompressible and Neo–Hooke elastic with ls = 260. The constitutive stress–strain relation for
such material is given in one-dimension by

r ¼ ls k4 � 1

k2
; ð61Þ

where r denotes the principal Cauchy stress associated with the in-plane stretch k. Eq. (61) can be derived from (60) by
assuming plane strain conditions and exact incompressibility (Ks!1). The membrane is connected to the points A
and B, whereby it is prestressed such that k0 = 1.2. The thickness of the stress-free membrane is 0.01 and the density is
neglected, i.e. qs = 0. The external pressure is set to pext = 0.5.



(a)

(b)

Fig. 7. Flow induced vibrations of a flexible beam: vertical displacement d of the tip of the structure; Dt = 0.005; 4336 fluid elements, 20 nine noded small
or large strain solid elements (A,B), 4564 fluid elements, 20 beam elements (C); (a) build-up of oscillations from the rest, (b) periodic long term responses.

(a)

(b)

(c)

Fig. 8. Flow induced vibrations of a flexible beam: vertical displacement d of the tip of the structure; 4336 fluid elements, 20 nine noded small strain solid
elements (A), different time step sizes Dt; (a) build-up of oscillations from rest, (b) oscillations for small time step Dt = 0.005, (c) periodic long term
responses.
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(a)

(b)

(c)

(d)

Fig. 9. Flow induced vibrations of a flexible beam: vertical displacement d of the tip of the structure; Dt = 0.005; 12,330 fluid elements, 20 nine noded
small or large strain solid elements (A,B); (a) build-up of oscillations from rest, (b) oscillations for small strain model, (c) oscillations for large strain
model, (d) periodic stable long term responses.
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The fluid domain is discretised with 8658 elements. A detail of the mesh is given in Fig. 12. The mesh update in the ALE
region is performed on the basis of the pseudo-elastic strategy discussed in Section 4.1 with lm = Km = 1. The membrane is
modelled with 25 linear geometrically exact finite elements. The interface degrees of freedom coincide with those of the
membrane. The time integration parameters are set to qf

1 ¼ qs
1 ¼ 0:8 for both the fluid and the membrane. First, the equi-

librium configuration associated with �uin ¼ 0 is computed. This configuration depends only on the external pressure pext

and the membrane stiffness. At time instant t = 100, the inflow velocity is then raised instantaneously from zero to
�uin ¼ 1. For 100 < t < 150, the time step size is set to Dt = 0.1, whereas for t > 150 different time step sizes are considered,
in order to study the effect of Dt on the long term solution.

The diagrams in Fig. 13 show the evolution of the vertical displacement of point C of the membrane in time. Some vor-
ticity plots are presented in Fig. 14. The convergence of the residuals for a typical time step is illustrated in Table 3.



Fig. 10. Flow induced vibrations of a flexible beam: Typical vorticity distribution during stable long term oscillations, 4336 fluid finite elements, 20 small
strain solid continuum elements (A), Dt = 0.005, vort(uh) 6 �150! black, vort(uh) P +150! white.
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The following observations are made on the basis of the numerical results:

• The sudden increase of the inflow velocity from zero to �uin causes the propagation of a pressure wave through the chan-
nel. The membrane acts like a buffer and temporarily forms a large bubble. The internal forces of the membrane and the
external pressure soon reduce the extreme membrane displacements to more moderate values and, at about t = 150, the
fluid flow and the deformation of the membrane seem to take an unsteady periodic long term response, which is char-
acterised by the periodic necking of the downstream half of the membrane and the separation of vortices from the mem-
brane surface, whenever the necking is maximal. This behaviour is illustrated in Figs. 13 and 14. A similar solution is
obtained by Heil [57], who employs a different numerical model for the membrane.

• Fig. 13(b) shows that the long term responses obtained for the time step sizes Dt = 0.02 and Dt = 0.50 deviate only by a
small amount.

• The convergence of the residuals is observed to be very good. Table 3 shows the residuals of a typical time instant
obtained with the large time increment Dt = 1.00. Note that the table does not display any residuals of the solid solver.
This is due to the fact, that all degrees of freedom of the membrane are, in fact, degrees of freedom of the interface.
Thus, step 3 in Box 1 does not apply, and some expressions in the formula of step 5 vanish. The partitioned New-
ton–Raphson procedure may be considered to reduce to a monolithic scheme in this special case.



Table 1
Flow induced vibrations of a flexible beam: periodic long term response, typical convergence of the absolute residuals, 4564 fluid elements, 20
geometrically exact beam elements (C), Dt = 0.005, t = 19.780

I II III IV

2 1.00 No conv.
0.50 No conv.
0.25 3.6E+2 1.4E+2 3.7E+1 4.4E+0 1.2E�1 1.0E�4 9.0E�11
0.50 3.9E+2 1.5E+2 4.5E+1 5.0E+0 1.4E�1 1.2E�4 1.1E�10
0.75 4.3E+2 1.7E+2 5.6E+1 7.7E+0 5.0E�1 2.4E�3 5.1E�8
1.00 4.8E+2 1.9E+2 9.8E+1 2.7E+1 3.2E+0 8.5E�2 7.0E�5 7.1E�11

3 9.1E�1 1.8E�9
4 7.4E+1

2 1.00 6.9E+0 2.8E�1 5.1E�4 2.0E�9
3 2.3E+1 2.5E�5 5.6E�13
4 1.1E+0

2 1.00 1.9E�1 2.9E�4 5.9E�10
3 7.9E�1 2.4E�9
4 1.2E�2

2 1.00 1.3E�4 1.1E�10
3 3.2E�4 5.8E�13
4 2.9E�7

Column I: identifies step in Box 1, fluid mesh solver (2), solid solver (3), residual of combined fluid + interface solver (4).
Column II: combined fluid + interface residual.
Column III: increment cutting in the fluid mesh solver.
Column IV: residuals of fluid mesh solver and solid solver.

Table 2
Flow induced vibrations of a flexible beam: periodic long term response, typical convergence of the absolute residuals, 12,330 fluid elements, 20 large strain
solid continuum elements (B), Dt = 0.005, t = 19.985

I II III IV

2 1.0000 No conv.
0.5000 No conv.
0.2500 No conv.
0.1250 No conv.
0.0625 6.2E+2 2.6E+2 4.6E+1 2.4E+0 9.4E�3 1.7E�7 6.8E�10
0.1250 6.2E+2 2.6E+2 4.6E+1 2.4E+0 9.4E�3 1.6E�7 6.8E�10
0.1875 6.2E+2 2.6E+2 4.6E+1 2.4E+0 9.3E�3 1.6E�7 6.6E�10
. . . . . .

. . . . . .

0.6875 6.4E+2 2.6E+2 4.6E+1 2.4E+0 8.8E�3 1.3E�7 6.8E�10
0.7500 6.4E+2 2.6E+2 4.6E+1 2.4E+0 8.8E�3 1.3E�7 6.7E�10
0.8125 6.4E+2 2.6E+2 4.6E+1 2.4E+0 8.8E�3 1.3E�7 6.7E�10
0.8750 6.4E+2 2.6E+2 4.6E+1 2.4E+0 8.8E�3 1.3E�7 6.5E�10
0.9375 6.4E+2 2.6E+2 4.6E+1 2.4E+0 8.8E�3 1.3E�7 6.6E�10
1.0000 6.4E+2 2.6E+2 4.6E+1 2.4E+0 8.8E�3 1.2E�7 6.8E�10

3 1.3E+2 1.0E�5 3.4E�9
4 5.9E+3

2 1.00 No conv.
0.50 2.1E+2 8.5E+1 1.1E+1 2.4E�1 1.2E�4 6.4E�10
1.00 2.1E+2 8.5E+1 1.1E+1 2.3E�1 1.1E�4 6.3E�10

3 9.3E+4 1.8E+2 2.7E�3 2.0E�9
4 1.7E+1

2 1.00 5.4E+1 2.3E+0 6.3E�3 6.1E�08
3 2.7E+4 7.4E+1 2.2E�3 1.6E�09
4 1.6E�1

2 1.00 5.6E�1 2.8E�4 6.5E�10
3 2.0E+2 6.6E�3 3.0E�9
4 4.6E�5

Column I: identifies step in Box 1, fluid mesh solver (2), solid solver (3), residual of combined fluid + interface solver (4).
Column II: combined fluid + interface residual.
Column III: increment cutting in the fluid mesh solver.
Column IV: residuals of fluid mesh solver and solid solver.
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Fig. 11. Flow through a channel with a flexible wall: geometry of the problem and boundary conditions.

Fig. 12. Flow through a channel with a flexible wall: detail of fluid mesh with 8658 and membrane mesh with 25 finite elements.

(a)

(b)

Fig. 13. Flow through a channel with a flexible wall: evolution of vertical displacement dC of point C of the membrane in time; transition from initial
disturbances to stable long term behaviour for Dt = 0.10 (a), long term response for different time step sizes (b).
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9.3. Flow through a flexible pipe

This example is concerned with the flow through a flexible circular pipe. The physics of this class of problems, which is
extremely relevant in the area of biomechanics, is very complex and very sensitive to the problem boundary conditions and



Fig. 14. Flow through a channel with a flexible wall: vorticity distribution at different time instants; Dt = 0.01, vort(uh) 6 �3! black, vort(uh) P
+3! white.
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the material properties of the pipe. Thus, for the sake of brevity, we restrict this subsection to a preliminary study of the
problem with focus on the efficiency of the methodology developed in this work.

The pipe consists of Neo–Hookean elastic material described by (60). At the inflow end, the orifice is fixed in space,
whereas the outflow end is free to expand or contract, but fixed in the direction of the pipe axis. The inflow velocity profile
corresponds to undisturbed Poiseuille flow with the maximum velocity umax(t). The geometry and the boundary conditions
of the problem are displayed in Fig. 15. Axisymmetric conditions are assumed in this study.

The viscosity and the density of the fluid are lf = 0.0101 g (cm s)�1 and qf = 0.998 g cm�3, whereas the material para-
meters of the pipe are chosen as ls = 0.1 N mm�2, Ks = 5 N mm�2 and qs = 0.1 g cm�3. The inflow velocity varies in time
according to

umaxðtÞ ¼ �uð1� cosðxtÞÞ; ð62Þ



Table 3
Flow through a channel with a flexible wall: convergence of the absolute residuals of a typical large time step, Dt = 1.0, t = 340; note that the solid solver
does not need to be evoked since all degrees of freedom of the membrane are interface degrees of freedom

I II III IV

2 1.000 No conv.
0.500 No conv.
0.250 1.6E+0 6.9E�1 2.6E�1 6.3E�2 5.3E�3 4.2E�5 2.7E�9
0.500 3.0E+0 1.4E+0 6.3E�1 2.7E�1 8.3E�2 1.1E�2 1.8E�4 5.5E�8
0.625 4.7E�1 1.1E�1 1.1E�2 1.4E�4 2.9E�8
0.750 5.0E�1 1.2E�1 1.4E�2 2.4E�4 9.2E�8
0.875 5.3E�1 1.4E�1 1.8E�2 4.3E�4 3.1E�7 1.8E�13
1.000 5.7E�1 1.6E�1 2.3E�2 7.8E�4 1.1E�6 2.1E�12

4 2.4E+0

2 1.0 1.5E+0 6.0E�1 2.3E�1 5.1E�2 2.8E�3 8.9E�6 8.6E�11
4 4.9E�1

2 1.0 4.3E�1 1.0E�1 7.7E�3 6.5E�5 5.4E�9
4 4.7E�2

2 1.0 1.1E�2 4.2E�5 1.9E�9
4 2.7E�4

2 1.0 3.7E�5 6.8E�10
4 4.5E�9

Column I: identifies step in Box 1, fluid mesh solver (2), residual of combined fluid + interface solver (4).
Column II: combined fluid + interface residual.
Column III: increment cutting in the fluid mesh solver.
Column IV: residuals of fluid mesh solver.

Fig. 15. Flow through a flexible pipe: geometry and boundary conditions.
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which corresponds to a sequence of sinusoidal impulses. We choose �u ¼ 5 cm s�1 and x = 10 s�1. The choice of the para-
meters is arbitrary and serves only the demonstrational purpose of this numerical study.

The fluid domain is modelled with 3250 axisymmetric finite elements. The pipe wall is represented by 450 eight noded
axisymmetric quadrilateral elements, each of which is integrated with four Gauß points. A detail of the spatial discretisa-
tion is shown in Fig. 16, in which the independent interface nodes are highlighted. The ALE region is identical with the
entire fluid domain and the mesh update is based on the quality criteria (19). The time integration parameters are set to
qf
1 ¼ 0:85 and qs

1 ¼ 0:7. The simulations are performed for Dt = 0.02 s.
The diagram in Fig. 17 shows the evolution in time of the prescribed rate of inflow and the resulting rate of outflow of

fluid volume. Several typical mesh configurations of the pipe are displayed in Fig. 18.
We make the following observations:

• After approximately 10 inflow cycles the outflow shows a stable long term response, which is characterized by the equal-
ity of the average inflow and outflow rates. Clearly, the deformation of the flexible pipe damps out the variations of the
inflow.

• The convergence of the residuals is observed to be asymptotically quadratic.



Fig. 16. Flow through a flexible pipe: detail of fluid and solid meshes, interface nodes are highlighted.

Fig. 17. Flow through a flexible pipe: evolution of flow rates in time.

Fig. 18. Flow through a flexible pipe: typical configurations of the pipe and distribution of axial fluid velocity, uz 6 0 cm s�1! white, uz P 10 cm s�1!
black.
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10. Conclusions

A computational fully implicit strategy for fluid–structure interaction has been presented. Numerical examples have
been provided, which give evidence of its robustness and efficiency. The discretisation of time and space can, to a wide
extent, be refined independently.

The adopted computational framework allows the independent discretisation of fluid, solid and interface. The solution
strategy of the coupled system, which relies on the separation of the mesh solver, the structural solver and the combined
fluid + interface solver, is based on consistent linearisation, and renders asymptotically quadratic convergence of the resid-
uals. However, we note that the methodology presented requires careful and tedious computer implementation.

The strategy seems well suited for the modelling of the interaction of fluid flow with very flexible structures, which
undergo large displacements.

It should be mentioned that, although applications presented in this work have been restricted to two-dimensional con-
figurations, no conceptual difficulties exist in employing the described strategy in three-dimensional situations.

For a moderate number of interface degrees of freedom ni, the overall requirements on computational time and
computer memory seem very competitive. The efficiency of the developed methodology for problems with larger ni needs
further investigation. The detailed report assessing the efficiency of the developed computational framework for fluid–
structure interaction is planned for future publications.
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