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Abstruct- Transformation methods are a very powerful tool 
in finite element modelling. In many cases, an adequate map- 
ping transforms the problem into an easier one or allows to take 
advantage of the symmetries. This paper demonstrates that any 
mapping can be handled automatically provided the classical vec- 
tor analysis approach is given up for the benefit of a differential 
geometry approach. As a first example, it is shown that axisym- 
metrical problems need no more a particular treatment provided 
the mapping of the cylindrical coordinates on the Cartesian ones 
is considered as it is. Furthermore, a novel axisymmetrical for- 
mulation is proposed which relies on one further transformation 
and improves considerably the quality of the interpolated field. 
Transformation methods are also of great help to model the in- 
finite space by means of finite elements. Many authors have pre- 
sented such transformations which are often instances of the same 
general shell transformation that is presented here. 

Index terms- Ikansforms, differential geometry, TEAM 
Workshop problem 11, object oriented programming, software 
desigddevelopment, Interpolation. 

I. INTRODUCTION 

Transformation methods are a very powerful tool in finite el- 
ement modelling. An adequate mapping transforms the prob- 
lem into an easier one or allows to take advantage of the sym- 
metries. Transformation methods are of great help to model 
the infinite space by means of finite elements and many au- 
thors have presented such transformations [1][2]. It can also 
be shown that axisymmetrical problems need not a particular 
treatment provided the mapping of the cylindrical coordinates 
on the Cartesian ones is considered as it is. 

From a general point of view, the finite element method is a 
mathematical tool to discretize a continuous problem and ob- 
tain an algebraic system Ax = b. The components of the ma- 
trix A are the result of the integration of some densities on the 
finite elements. To make this integration easier, it is customary 
to define each finite element V of the mesh as the image of a 
reference element Vrej by a mapping 4ref invclving the coor- 
dinates of its N nodes. The same reference element is shared 
by all the elements of the mesh that have the same shape. It 
is the domain on which are defined the basis functions sa for 
the interpolation of the discretized field as well as the gauss 
points and the weights that are needed for a numerical integra- 
tion. It is therefore the domain over which the integration is 
performed. 

Actually, everything is ready in most of the finite element 
programs to work with transformation methods because this 
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mapping &ej at least is always present. Working with trans- 
formation methods means nothing more than combining it with 
one or several other changes of coordinates. 

For an automatic consideration of any transformation, the 
expressions of the finite element densities must be formally 
identical whatever the coordinate system. Classical vector 
analysis fails to give such expressions because it assumes or- 
thonormal coordinates only and ignores then the geometrical 
notions of metric and volume form which happen to be trivial 
in that particular case. In order to get coordinate independent 
expressions, it is necessary to work with true coordinate sys- 
tems (which are not always orthonormal) and to consider the 
geometrical notions of metric and volumeform. Those dif- 
ferential geometry notions are intrinsic, i.e. peculiar to each 
coordinate system (while the Jacobian matrix is rather a kind 
of bridge between two coordinates systems), and the densities 
expressed in terms of them are therefore automatically coordi- 
nate independent. 

11. MAPPINGS 

Let M and N be two spaces and 4 : M e N a nonsingular 
mapping. Let F ( M )  and F ( N )  be the sets of the fields defined 
on M and N respectively. 

The general rules for mapping the fields is just what is 
needed to get coordinate independent expressions for the fi- 
nite element densities. For that purpose, the fields have to be 
sorted out into four categories in accordance with the deriva- 
tive operator they are subjected to in the physical laws. 

(FO) g* (F1)  3 (F2)  3. (F3) 

The elements of the { F k ,  IC = 0 ,1 ,2 ,3}  sets are respectively 
noted dk). The fields in Fo are subjected to the grad operator 
(e.g. temperature, electric potential). Those in F3 are densities 
(e.g. charge density). Both are scalar fields. The fields in F' 
are subjected to the curl operator (e.g. magnetic field, electric 
field, vector potential) and are noted with one lower indice, 
(w('))i. The fields in F 2  are subjected to the diw operator 
(e.g. induction field, current density) and are noted with one 
upper indice, ( ~ ( ~ 1 ) ~ .  These two are vector fields. Note that 
the position of the indice is important since it determines how 
the fields transform. 

The integration of a density f E F 3 ( N )  on N = 4 ( M )  can 
be performed on M thanks to the rule 

s,,,, f = 1 M 
(2) 

where the map 4* : F ( N )  ++ F ( M )  is called the dual map of 
4. It is known if 4 is known as one will see further on. 

If the coordinates {XI, I = 1,2 ,3}  are defined on N and 
the coordinates { d ,  j = 1,2 ,3}  on M ,  the mapping 4 and its 
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jacobian matrix A$ are defined by 

(3) 
ax' 
auj " _  

X' = X ' ( u j )  = -(U'). 

The inv 9 of Ai  is noted A;. *=f- 
111. METRIC MATRIX 

The metric matrix is a 3x3 symmetric matrix. It is noted with 
two lower indices, gij. In an euclidean space E the metric is 
the unity matrix 91 J = 61 J .  In any system of coordinates, the 
components of the metric matrix are computed thanks to the 
jacobian matrix of the mapping from the euclidean s ace E 
onto that system of coordinates by the relation gij = Ai 91 JA; 
where the implicit summation on repeated indices, one upper 
and one lower, is assumed as it will be throughout the paper. 
Its determinant is the square of the determinant of the Jacobian 
matrix: de t (g i j )  E g = A2 3 (det(Ai))2. The inverse of the 
metric matrix is noted with two upper indices and is given by 
gij = A ~ , ~ I J A $ .  

P 

IV. MULTIPLE MAPPINGS 

The mapping can be the combination of several succes- 
sive mappings (Fig. 1). Thanks to the chain rule of partial 
derivatives, it is clear that, if the jacobian matrices of the in- 
dividual mappings are given, the resultant jacobian matrix is 
simply their matrix product : 

(4) 

&+#yd 

Fig. 1. Multiple mappings 

V. TRANSFORMATION METHODS 

In the finite element method, the ends of the chain of spaces 
(Fig. 1) are always the same. The first space is the reference 
space E r e f  where the integrations are performed and the shape 
function defined. The last one is the physical space E in which 
the physical laws are given. The reference space is either lD, 
2D or 3D in accordance with the symmetries of the system. 
The physical space is always an euclidean one. 

A third space of importance is the mesh space E'. It is the 
space spanned by the finite elements defined in the data base 
of the problem. If no transformation method is considered, the 
mesh space is identical with the physical space, E' z E. The 
mapping &f : Erer c) E' and its jacobian matrix can be 
written : 

N N 

where NA are the coordinates of the N nodes of the finite ele- 
ment and sa the corresponding nodal shapes functions. 

Fundamentally, the principle of a transformation technique 
is to map the shape functions, which are simple polynomials in 
Erej ,  onto interpolation functions in E that are not necessarily 
polynomials in order to fit better the interpolated field in that 
space. One or several intermediary mappings (two in Fig. 1) 
can be defined for that purpose giving rise to one or several 
intermediary spaces : E', E'', . . . 

The following tables give the rules to map the fields and the 
rules to compute finite element densities that are the product of 
two fields, say q and E ,  and a physical characteristic function 
p. This is enough for most of the EE. densities encountered in 
a wide variety of formulations. 

TABLE I 
MAPPING OF THE DIFFERENT KIND OF FIELDS 

F ( N )  c) F ( M )  F ( M )  t) F ( N )  

F1 (4*w)i = A ~ W I  (+-*w)I = Aiwi 
F' ($*w) = w ($-*w) = w 

F3 (4*w) = &w (4-*w) = wldz 
F2 ( 4 * ~ ) ~  = f i l l f w '  (4-*w)' = A f w i / f i  

TABLE I1 
COORDINATE INDEPENDENT EXPRESSIONS FOR THE MOST 

COMMON FINITE ELEMENT DENSITIES 

Those expressions are valid in any coordinate system. Ev- 
erything concerning the mappings is gathered in the computa- 
tion of the metric matrix and its determinant. With a careful 
programming, made easier within an object oriented approach 
[3], the finite elements involved in different transformations 
only differ by the subroutine that computes the components of 
the metric matrix. All the remainder is strictly unchanged. In 
other words, only the mapping itself must be defined to work a 
new transformation out. It is of course the bare minimum. 

VI. APPLICATIONS 

A. Axisymmetrical problems 

Axisymmetrical problems are just problems mapped from 
the Cartesian coordinates of E onto cylindrical coordinates. 
The mappings and 4' and the jacobian matrix of 4' are 
expressed by (7) with {XI = X , Y , Z } ,  { y j  = r , x , 0 }  and 
{uk = U ,  w ,  w}. 
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cos0 0 - r s in8  

sin8 0 r c o s 8  
Aj'(yj) = ( 0 1 0 ) (7) 

The components of the vector potential a E F' are 
( a ~ , a y ,  az) in E and (a,., a,, ae) in E'. Since we are now 
working with true coordinates and have given up the classical 
Vector Analysis, the curl operator has the same expression in 
any coordinate system. The components of the induction field 
in E and E' are thus respectively given by (8). 

(bx, b y ,  b z )  = 1 @E& - 
(br,b",be) = ( A - L?!& 4 - &a5.a',cx&c 

- &LZ &.L - @EX) ay 
az ae 7 ae ar 9 ar a% 1 

(8) 
The axial symmetry implies that nothing depends on 8, the 

model can be restricted to the plane 0 = 0. In that case, the 
vector potential reduces to its &-component ug(r, z ) ,  the jaco- 
bian matrix of 4' is d i a g ( l , l , r )  and its determinant equals r .  
If a linear interpolation = cr + d is used, the z-component 
of the induction is bz = -c by (8) and its Y-component is 
b y  = -c /& as seen in Table 11. Since g = r2 in the coordi- 
nates {X'}, it involves a r-l term that causes a terrible jagged 
pattern for the induction field (Fig. 2). 

To avoid it, the solution is to make one more change of 
coordinate in order to use p = r2 instead of r as the radial 
coordinate. The mappings &f, 4' and qS', expressed with 
{X' = X,Y, Z}, { y j  = p ,  z , 0 }  and {xi = r,z,t9} are then 
given by (9) with Ng = ( N k ) 2 .  The jacobian matrix of @$" is 
diag(l/2JiZ, 1, fi) and g = 1/4 is a constant in E'. A linear 
interpolation ag = cp + d gives now a constant induction field 
by = -2c. This is exactly the gentle property one has in the 
planar case. 

(9) 
Z = x s i n 8  

Figs. 2 and 3 show the induction field computed for the 
Problem 11 of TEAM Workshop The problem consists of a 
hollow, nonmagnetic, conducting sphere ( p  = 2.lO-'Rm, 
Tint = 50mm and r,,t = 55mm) in a spatially uniform in- 
duction field that is instantaneously switched on at t = 0. The 
Y -component of the induction field computed with first or- 
der finite elements is presented on two cuts, respectively along 
X-axis and Y-axis, and for different times (t=1,2,5, 10 and 
20ms). The classical axisymmetrical formulation exhibits a 
very poor representation of the induction field which becomes 
moreover dramatically unaccurate near the axis. 

B. Shell transformation 
In electromagnetism, the boundary conditions must be im- 

posed at the infinity and many transformation methods have 
been proposed to model the infinite space by means of finite el- 
ements. Very often, the transformations proposed are instances 
of the general shell transformation given by 

(X' - C') = (y j  - Cj)dj 'F(A,B,r(yj)) ,  (10) 
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Fig. 2. 
(below) with the classical axisymmetric formulation. 
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Fig. 3. 
(below) with the modified axisymmetric formulation. 

By(t=l, 2, 5, 10, 20ms) along X-axis (above) and Y-axis 
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dF - = - e -  F e=- B - 2r 
dr r P@ - r )  (12) for nontransformed elements, the accuracy of the transformed 

elements is related to the quality of the discretisation. The in- 

with {X‘  = X, Y,  2 )  and {y j  = z, y, z } ,  C’ the fixed point 
of the transformation (C’ = CjSj’), A and B the inner and 
outer “radius” of the shell. 

This transformation a plies to cylindrical shells, paralelipi- 
pedic shells along the kt R direction and to spherical shells with 
respectively 

r ( y j )  = J(z - C”)2  + (y - cq2, 
T(YJ.1 = (Yk - c”, 
r (yJ)  = J(. - C”)2 + (y - cq2 + ( z  - cq2. 

The jacobian matrix of this mapping is given by (13) with ni = 
y“ and its determinant is Ashell(A, B , r )  = F2(1  - e). 

1 -en”% -en”& 
BY 
BY 
BY 

1 -eng& -env& 
-en%% -en%& 1 

In order to have a regular mapping, the determinant of the 
jacobian matrix of the shell transformation must be differ- 
ent from zero everywhere. It is also natural for this partic- 
ular transformation to impose that no element of the shell is 
contracted and that they are all expanded. That means that 
Ashell 2 1, so 6 2 0. Finally, the continuity of the metric is 
ensured by Ashell(A, B ,  r = A )  = 1. That means that the dis- 
torsion of the finite elements varies smoothly with no disconti- 

ductances computed withthis technique have shown a good 
agreement with measurements. 

The metric matrix components tends towards infinity on the 
outer boundary of the shell. This requires some nunmica1 pre- 
cautions to avoid floating point operation errors, especially for 
the visualization of the computed fields. An other solution is 
to impose that the image of the outer boundary of the shell is 
at a finite distance : F ( A ,  B ,  r = B )  *+L < 00. The relations 
(1 1) and (12) remain true with the simple substitution 

and one can check that 

lim B‘ = B. 
L-tm 

The value of the parameter p has to be chosen in accor- 
dance with the characteristics of the problem under consider- 
ation. For instance, R(X’) = r ( y j ) F ( r ( y j ) )  by (10) where 
R(X’) is the function r(yj) expressed in terms of the coordi- 
nates {X’}. The shell transformation (10) (11) has then the 
properties to map R-Q fields onto rP(P-’)(B - r )qP fields that 
are polynomials if p is integer and p 2 1. In the axisymmetric 
case, the far vector potential field behaves like K2. Second 
order polynomial in T can thus match the field in the shell if 
we choosep = 1. 

nuity across the inner boundary of the shell. Those conditions 
are all verified if the outer radius of the shell is chosen twice 
the inner radius : B = 2A. 

VII. CONCLUSION 

A general presentation of transformation methods has been 
given in this paper. The technique is a very flexible tool if the 
finite element densities are written in a coordinate independent 
fashion. Such ready-to-use expressions have been given which 
translate into slight modifications of existing codes. Only the 
mapping itself (which can be a combination of any number 
of individual mappings) has to be implemented and all the re- 
mainder of the program is unchanged. Treated in this way, 
transformation methods applies automatically to any formula- 
tion and any shape functions. The benefit of multiple mappings 
has been shown in a few examples making use of up to four 
successive mappings in the case of the modified axisymmetri- 
cal shell. 
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