Electrothermal Simulation in GetDP with Newton's Method
Michael Asam - 21. February 2012

1. System of differential equations in strong form

Thermodynamic PDE:

p~c(T)-3—T + V(K(T)-VT) - q(VV,T)=0 inQ (1.1)
t
with the heat source g
> >

qVV,T) = JE (12)

Q(VV.T) = K(VV.T)(VV)? (1.9)
Electric PDE:

V (-k(VV,T)-VV) = 0 in Q (14)

Electric natural boundary condition:

K(VV,T)-VV =1 at Tsouree (1.5)

2. System of differential equations in weak form

Thermodynamic PDE:

(

p-c(T).&Tj.u 0 + J (T VT-Vudo - | K(VV,T)-(VV)2ud = 0 (2.)

Electric PDE:

J K(VV,T)-VV-VwdQ — J Jwdl' =0 (2.2)

u and w are so called test functions.

3. Newton-Raphson method

To solve the equations (2.1) and (2.2) the Newton-Raphson method is applied.
Therefore we define two functions:

Th(V,T) = [p-c(T)-&Tj.udQ+J k(T)-VT-VudQ—Jr K(VV,T)-(VV)? d02

J

EI(V,T) = J K(VV,T)-VV-VwdQ — J Jwdr

Target is to find V and T to set both functions equal zero.
The Newton-Raphson method acts according the following iteration scheme:

1
d - d
9 S
Vi) (Vi) |av ar Th(V,.T)
) i) |d g dg BI(V,T;
v dT
With
6Vi+l ~ Vi+1_Vi
M) (T~ T

equation (3.3) can be written in the following form:

Th(V,.T)) + 6Vi+1-:—VTh(Vi,Ti) N 6Ti+l~(;—_|_Th(Vi,Ti) =0

d d _
EI(Vi,Ti> + 6Vi+1-d—VEI(Vi,Ti) + 6Ti+1-d—TEI(Vi,Ti) =0
Those two equations have to be implemented in GetDP!

Note:
The unknowns are only 8V, , and §T. ..
i+1 i+1

Everything else is known from the former iteration step.

(3.1)

(32)

(33)

(34)

(35

(36)

For getting the derivatives of Th and El, equations (3.1) and (3.2)
are splitted into five parts:

Th(V,T) = AV, T) + B(V,T) + C(V,T) 3.7)
AV, T) = ” p»c(T)-(%Tj-u a0 (3.8)
B(V,T) = : K(T)-VT-Vu dQ (3.9)
C(V,T) = —J K(VV,T)-(VV)2udQ (3.10)

and
EIV,T) = F(V,T) + G(V,T) (3.11)
F(V,T) :J K(VV,T)-VV-VwdQ (3.12)
G(V,T) = —J Jwdr (3.13)

4. Newton-Raphson of thermal part

Inserting equations (3.7) .. (3.10) in (3.5) yields:

A(V T)+ 8V, (V,TI |+1d A(V T) - (4.0.1)
T.

d d

+B(Vi,)+5v dVB(V,T) + 8T, dTB(V,T)

+ C(V) +8V,, - 3VC() + 6Ti+1-:—_|_C(Vi,Ti)

4.1 Part A in GetDP-notation

Recall

A{vi,Ti) = J[p-c(Ti)-&TJu dQ (4.1.1)
In GetDP-notation:

Galerkin{ [rho[] * c[{T}] * Dt[{T}], {T}]; ... } (4.1.2)

Where {T} referes to the temperature of the last iteration Ti‘

The testfunction u is choosen to be equal T.

4.2 Linearisation of A with respect to V

Since A does not depend on V the derivative is zero:

d

6Vi+l~d—VA(Vi,Ti) =0 (4.2.1)

Therefore there is no need to implement this therm in GetDP.

4.3 Linearisation of A with respectto T

For getting the derivative of A we need to take the time discrete equation for A:

n n-1
AV,T) = (p.c(T)-%-u dQ (4.3.1)

Here T"is the temperature at the actual time point and Tn_1 is the
temperature one time step before. At is the time step.

The derivative of A is:

Cpvn| D (o T
EA(v,T)-I p{m +(d—Tc(T)) ~ }udQ

J (4.3.2)
And therfore
6Ti+1~3—_|_A(Vi,Ti) = JI(p{% N :—_I_C(Ti>%[Tij~6Ti+1-u d0 (432)
In GetDP-notation:
dA_dT[Region | = rho[] * (c[$1#1] / Delta_t + dc_dT[#1] * $2) (4.3.3)
Galerkin{ JacNL[dA_dT[{T}, Dt{T}] * Dof{T}, {T}]; ... } (4.3.4)

Here the new expression Dof{T} appears. In this case it corresponds to the
unkown 6Ti+1‘ The JacNL statement is to tell GetDP that this Degree Of Freedom

is the delta per iteration and not the absolute value of the unknown temperature itself.

4.4 Part B in GetDP-notation

Recall
B(Vi,Ti) = J k(Ti)-V T, VudQ (4.4.1)
In GetDP-notation it would be written as
Galerkin{ [K[{TY] *{d T}, {d T}]; ... } (44.2)

But, as we will see in chapter 4.6, this part can be combined with an other
in order to simplify the equations further and to save calculation time.

4.5 Linearisation of B with respect to V

Since B does not depend on V the derivative is zero:

d

6Vi+l'R/ B(Vi,Ti> =0 (45.1)
Therefore there is no need to implement this therm in GetDP.
4.6 Linearisation of B with respect to T
Recall:
B(Vi,Ti) = J(k(Ti)-V T, VudQ (4.6.1)
The linearisation is:
6Ti+l~j—_|_B(Vi,Ti) = J(k-(:—TVTJ-éTM-vU a0 + J((:—Tkj-v T.8T, - Vud (46.2)

To derive [Z—V TJ-&Ti+1 it is necessary to have a deeper look at :
T

m

m
=2 (M) M= D (Tiayoy)
j =

i=1

(4.6.3) (4.6.4)

Where j is the node number (there are m nodes) and aj are the finite element basis

functions for the thermal calculations. The gradient of this expression is
m
Z (T Va)
—VT = Z Voy

j=1

(4.6.5)

(4.6.6)

m
d _
(ﬁv TJ~6Ti+1 = Z (VOLI'STHLJ.OLJ.)
j=1
The basis function OLj is equal 1 at each node and can be omitted at the end of

the equation above.

4 vt |sT. . =veT
daT i i+1 i+1

So finally we get:

5T. -—TB(Vi,Ti) = (k(Ti>~V6Ti+1~Vu dQ + [(d—k(Ti)}VTi-éTm.Vu dQ

| JdT

As can be seen in equation (3.13) the tem (4.6.9) has to be added to several
other terms. One of them is the term (4.4.1) which can be combined with with
(4.6.8) in order to save computation effort.

B(Vi,Ti) + STM%B(Vi,Ti) = (k(Ti>~VTi~Vu da ...

J

+ k(Ti)~V 8T, ;' Vude ..

r

+ d—k(T.) VT-5T. .-VudQ
dT i i i+1

As defined above:
T'+1 = Ti + 6Ti+1

Therefore (4.6.10) simplifies to

B(Vi,Ti) + STM%B(Vi,Ti) = (k(Ti)-VTM.Vu do ...

J

+ (ﬁk(TiU-V T.8T, - VudQ

(4.6.7)

(4.6.8)

(4.6.9)

(4.6.10)

(4.6.11)

(4.6.12)

and in GetDP-notation:

Galerkin{ [K[{T}] * Dof{d T}, {d T}]; ... }

Galerkin{ JacNL[dk_dT[{T}] * {d T} * Dof{T}, {d T}]; ... }

4.7 Part C in GetDP-notation

C(Vi,Ti) = —J(m(v vi,Ti)-(vvi)z-u dQ

In GetDP-notation it would be written as

g[Region | = ($1#11)"2 * kappa[#1, $2];

Galerkin{ [-q[{d V}, {T}], {T}]; ... }

4.8 Linearisation of C with respect to V

We have to find the derivative of C with respect to V. But unfortunately the terms
in C depend only on VV. So we have to substitute the d/dV operator by d/d VV.

5vi+l.3—vc(vi,Ti) = (ZF,C(Vi’Ti)j'(Z_VVVJ'SViH

The middle term of this equation can be derived in the following way:

m

m
Wiz 2 Vi) M=) (Vi B
j=1 j=1

Where j is the node number (there are m nodes) and BJ. are the finite element basis

functions for the thermal calculations.

m

d

—VV. = V.

av ! Z BJ
i=1

(4.6.12)

(4.6.13)

(4.7.1)

(4.7.2)

(4.7.3)

(4.8.1)

(4.8.2)

(4.8.3)

(4.8.4)

The basis function BJ. is equal 1 at each node and can be omitted at the end of

the equation above.

CIRVVAR VIS V2 V)
dv i i+1 i+1

So finally we get:

6Vi+1~3—VC(Vi,Ti> = {m(v VTV, - (:vv

In GetDP-notation:

dg_dgradV[Region] = 2 * kappa[$1#21, $2#22] * #21 +
dkappa_dgradV[#21, #22] * #21/2;

Galerkin{ JacNL[-dg_dgradV[{d V}, {T}] * Dof{d V}], {T}1]; ... }

Note:

The derivative d—n(VV.,T.> gives in general a tensor because VVis
dvv o

a vector of the electric field.

_)
VvV =-E
d _d
n———_)n
dvv dE
d d d
— — —K
dE. X dE X dE_ X
X y z
d _ d—|<-u d—|<; d K,
o Ve T) = Yy dE, Y dE, Y
d d d
—K —K —K
dE. 2 dE Z dE. Z
X y z

Where Ko Hy and K are the anisotrop electrical conductivities.

(4.8.5)

n(VVi,Ti)j-(VVi)z}-VSViH-u d0

(4.8.6)

(4.8.7)

(4.8.8)

(4.8.9)

(4.8.10)

(4.8.11)

4.9 Linearisation of C with respectto T

Here we only need the derivative of «:

:_Tc(vi,Ti) = J[(vvi)z-(‘;_Tﬁ(v Vi,TiU-u dQ

So the linearisation is

d

6Ti+l'a—

i+1

J

dg_dT[Region] = ($1#31)"2 *dkappa_dT[#31, $2#32 |

In GetDP-notation:

Galerkin{ JacNL[-dg_dT[{d V}, {T}] * Dof{T}], {T}]; ... }

5. Newton-Raphson of electrical part

Inserting equations (3.11) .. (3.13) in (3.6) yields:

VT + 6Vi+1-:—VF(Vi,Ti) + 6Ti+l~(;—_|_F(Vi,Ti) . =0

+ G(Vi,Ti) + 5Vi+1'3_vG(Vi’Ti) + 5Ti+l%e(vi,Ti)

5.1 Part F in GetDP-notation

Recall
F(Vi,Ti) = Jr n(VVi,Ti)-VVi-VWdQ
In GetDP-notation:

Galerkin{ [kappa[{d V}, {T}] *{d V}, {d V}]; ... }

C(Vi,Ti) = —((VVi)2~(:—TH(V vi,Ti)j-sT. udQ

(4.9.1)

(4.9.2)

(4.9.3)

(4.9.9)

(5.0.1)

(5.1.1)

(5.1.2)

5.2 Linearisation of F with respect to V

The terms in C depend only on VV. Therefore we proceed in the same way as in
section 4.8 and substitute the d/dV operator by d/d VV.

SV 1-d—F(V.,T.) = d—F(V.,T.) 19 wv |-sv. 1
I+ dv 1”1 dvVv 1”1 dv | I+
Using equatin 4.8.5 we get

6Vi+1-3—vF(Vi,Ti) = [(H(Vvi,Ti) +VV;

J

The electrical current density and the electrical field are given by

d
dvv

n(vvi,Ti)j.vesvm.vW dQ

N
3 —H(VVi,Ti)~VVi

>
E

-VVv

The term in brackets in (5.2.2) is derivative

d j_ d
—J =K VV.,T.) + VV.
> (i’ dwvv

dE

H(vvi, Ti)

Inserting (5.2.5) in (5.2.2) yields

Y/ -—F(V T) = ((d—?j-vav VwdQ
i i i >V i+1
v J dE

In GetDP-notation:

Galerkin{ JacNL[dJ_dE[{d V}, {T}] * Dof{d V}, {d V}]; ... }

(5.2.1)

(5.2.2)

(5.2.3)

(5.2.4)

(5.2.5)

(5.2.6)

(5.2.7)

Note:

9
The derivative d_—>Ji is a tensor.
dE

—J (5.2.8)

In the 3D DMOS area the current flows only in z-direction. Therefore all elements

of the tensor but d—JZ are equal 0.

dE
Z
0
d > 00 O
=J. = (5.2.9)
-> 1 d
dE 00 —J
dE_ 2
4
45 = m(V V.,T.) +E ~d—m(V V.,T.) (5.2.10)
dE 4 Z 1 1 ZdE Z 1 1
Z Z

In GetDP-notation:

dJ_dE[Region] = kappa[CompZ[$1]#41, $2#42] + #41 * dkappa_dE[#41, #42] (5.2.11)

5.3 Linearisation of F with respect to T

Here we only need the derivative of «:

d—F(V.,T.) = (d— (¥ v.,T.)j-vv.-deQ
a7 "1 dT 1 1
So the linearisation is
5T, ~d—F(V.,T.) = d—n(V Ve T) [VpeT,, T
+1 g7 (| dT (I i+l

In GetDP-notation:

dg_dT[Region] = ($1#31)"2 *dkappa_dT[#31, $2#32];

Galerkin{ JacNL[dkappa_dT[{d V}, {T}] * {d V} * Dof{T}], {d V}]; ... }

5.4 Part G in GetDP-notation

Recall
G(V.,T.) = —J Jwdr
I |
In GetDP-notation:

Galerkin{ [-J[], {V}1; ... }

5.5 Linearisation of G

The term G does not depend on V or T. Therefore all derivatives of G are zero.

(5.3.1)

(53.2)

(5.3.3)

(5.3.4)

(5.4.1)

(5.4.2)

