Consider an electrostatic problem in a cylindrical volume, bottom end cap (surface) constrained to V=0, source terms in some volume elements, and top end cap with a von Neumann constraint implemented as shown in the formulation below. Does the 3rd Galerkin term (the von Neumann term)<br>
<br><div style="margin-left: 40px;">a) Require that the electric field through the upper end cap be equal to Eimposed?<br>b) Require that the electric field through the upper end cap be equal to the sum: field produced by charges in SourceDomain + Eimposed?<br>
c) Something else?<br></div><br>Formulation { <br>  { Name Electrostatics_v; Type FemEquation;<br>    Quantity {<br>      { Name v; Type Local; NameOfSpace Hgrad_v_Ele; }<br>    }<br>    Equation {<br>      Galerkin { [ epsr[] * Dof{d v} , {d v} ]; In Domain_Ele; <br>
                 Jacobian Vol; Integration GradGrad; }<br>      Galerkin { [ -q[]*chargeUnit/eps0/ElementVol[] , {v} ]; In SourceDomain; <br>                 Jacobian Vol; Integration GradGrad; }<br>      Galerkin { [ Eimposed , {v} ]; In UpperEndCap; <br>
                 Jacobian Sur; Integration GradGrad; }<br>    }<br>  }<br>}<br><br>The mesh is a cylindrical volume oriented along z. Domain_Ele refers to all volume elements of my mesh. SourceDomain is a set of volume elements in which there are charges. (These are near the lower end cap of the cylindrical mesh.) The 3rd term was meant to impose my von Neumann condition. When I wrote it I thought I was doing (a) above, but the result suggests otherwise. <br>
<br>John<br><br>